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Spatiotemporal dynamics resulting from the interaction of two instabilities breaking, respectively, spatial
and temporal symmetries are studied in the framework of the amplitude equation formalism. The correspond-
ing bifurcation scenarios feature steady-Hopf bistability with corresponding localized structures but also dif-
ferent types of mixed states. Some of these mixed modes result from self-induced subharmonic instabilities of
the pure steady and Hopf modes. The bifurcation schemes are then used to organize the results of numerical
simulations of a one-dimensional reaction-diffusion model. These dynamics are relevant to experimental
chemical systems featuring a codimension-two Turing-Hopf point but also to any experimental setup where
homogeneous temporal oscillations and spatial patterns are obtained for nearby values of parameters.
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PACS number~s!: 05.45.1b, 47.20.Ky

I. INTRODUCTION

In nonequilibrium systems, instabilities breaking either
temporal or spatial symmetry have been studied@1# in fields
as diverse as hydrodynamics@2#, nonlinear optics@3#, active
chemical systems@4,5#, etc. Recently, dynamics resulting
from the interaction of both types of instabilities have been
observed in several experimental systems@6–13#. Among
these, chemical systems have proved to be a generic example
as they genuinely present both types of instabilities. On the
one hand, oscillating reactions in well mixed reactors have
indeed become the typical examples of systems undergoing a
Hopf bifurcation resulting from a breaking of time symme-
try. On the other hand, the breaking of spatial symmetry in
chemical systems is now well documented@4,5# since its
observation in the chlorite-iodide-malonic acid~CIMA ! re-
action in 1990@14#. The periodic stationary spatial patterns
that emerge in that case result from a Turing instability based
solely on the coupling between nonlinear chemical reactions
and molecular diffusion@15#. A necessary condition for the
Turing instability to occur is that the diffusion coefficient of
the inhibitor species should be sufficiently larger than that of
the activator. In the experiments, color indicators are used to
visualize the patterns. They consist of large molecular weight
molecules of very small~in the gel possibly zero! diffusivity.
Such color indicators act to create favorable conditions to the
formation of Turing structures because they bind to the acti-
vator species thereby reducing its effective mobility@16#. For
a low indicator concentration, waves characteristic of a Hopf
oscillating regime are observed while Turing patterns take
over for higher concentrations of the indicator. This one
therefore controls the distance between the thresholds of the
Turing and Hopf instabilities that coincide at a codimension-
two Turing-Hopf point~CTHP!. Changing the concentration
of malonic acid allows one to scan the bifurcation scenario
near this point. In the vicinity of this degenerate point, a
wealth of complex spatiotemporal dynamics are observed.

The ideas that will be discussed below in the chemical con-
text are of greater generality as a CTHP can be expected to
occur in any other experimental setup where two instabilities
breaking, respectively, spatial and temporal symmetries in-
teract. The mechanism giving rise to the spatial pattern is
then not necessarily the chemical Turing instability.

Formally, a CTHP point is obtained when the linear sta-
bility analysis of a reference homogeneous steady state fea-
tures a degeneracy between a real root vanishing for a wave
numberkc and a pair of complex conjugated roots with fre-
quencyvc that both have a zero real part. Then the real root
corresponds to a stationary spatial Turing pattern character-
ized by the wave-number–frequency couple (kc,0) while the
complex roots relates to the Hopf mode (0,vc) correspond-
ing to a temporal oscillation with frequencyvc . Let us con-
sider the conditions to obtain a CTHP in the reaction-
diffusion Brusselator model. This model was chosen because
it has already been the subject of extensive analytical
and numerical studies related to both single Turing and
Hopf instabilities @17,18#. The evolution equations of the
Brusselator model read

] tX5A2~B11!X1X2Y1Dx¹
2X,

] tY5BX2X2Y1Dy¹
2Y. ~1!

The concentration of speciesB is chosen as the bifurcation
parameter. The homogeneous steady state
(Xs ,Ys)5(A,B/A) of system~1! undergoes a Turing insta-
bility when B.Bc

T5(11AADx /Dy)
2. A stationary spatial

pattern then emerges characterized by an intrinsic critical
wave vectorkc

25A/ADxDy. The steady state may also go
through a Hopf instability ifB.Bc

H511A2, evolving then
into a homogeneous limit cycle characterized by a critical
frequencyvc5A. The thresholds of these two instabilities
coincide at the CTHP point such thatBc5Bc

H5Bc
T . This*Electronic address: adewit@ulb.ac.be
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condition is achieved when the ratio of the diffusion
coefficients s5Dx /Dy reaches its critical value
sc5@(A11A221)/A#2.

In this work we study the bifurcation scenarios that can be
obtained in one-dimensional systems near the CTHP. Previ-
ous analyses@19–22# have tackled this problem and classi-
fied the bifurcation scenarios, focusing on the interaction be-
tween the steady mode and the Hopf mode without taking
into account spatial effects or subharmonic bifurcations of
the basic modes. However, by numerically integrating the
Brusselator model for values of parameters near a CTHP, we
have discovered several spatiotemporal dynamics that do not
enter the previously obtained classes of bifurcation sce-
narios. We will consider here only a two-variable model ex-
cluding the possibility of oscillating behavior and waves
originating through a Hopf bifurcation with finite wave num-
ber. The aim of this work is to extend the previous studies of
the Turing-Hopf interaction by reviewing the different spa-
tiotemporal dynamics that can be observed near a CTHP. To
do so, we compare the theoretical bifurcation schemes de-
rived in the framework of amplitude equations to the pecu-
liarities obtained by the numerical integration of the Bruss-
elator. The resulting dynamics that can be observed near a
CTHP can be divided into two main groups. The first one
gathers the dynamics due to the interaction between a Turing
mode and a Hopf mode. Their interplay can give rise to
bistability, localized structures, and to a mixed mode as is
discussed in Sec. II. The second group of spatiotemporal
dynamics results from subharmonic instabilities of either the
Turing or the Hopf mode and features more complex mixed
modes. Sections III and IV are, respectively, devoted to the
subharmonic instability of the Turing and the Hopf modes.
Section V discusses additional spatiotemporal scenarios ob-
served in the reaction-diffusion model before we summarize
and conclude in Sec. VI.

II. INTERACTION BETWEEN A TURING MODE
AND A HOPF MODE

The CTHP is characterized by the fact that three roots of
the characteristic equation of the linear stability analysis
have their real part which vanishes simultaneously. As an
example, in the Brusselator model and for a given value of
A, this occurs at the critical point (Bc ,sc). In the vicinity of
such a degenerate point, a Turing modeT(kc,0) with wave
number kc interacts with a homogeneous Hopf mode
H(0,vc) with frequencyvc . For one-dimensional systems,
the variablesC of the system can be described by a super-
position of these two modes:

C~x,t !5C01TeikcxwT1H eivctwH1c.c. ~2!

C0 is the uniform reference state whereaswT andwH are the
critical eigenvectors of the Turing and Hopf linearized evo-
lution operator, while c.c. stands for complex conjugate.T
andH are the amplitudes of the spatial and temporal modu-
lations, respectively. The competition between these two
modes is then described by the coupled amplitude equations
@19,21,22#:

]T

]t
5mT2guTu2T2luHu2T, ~3!

]H

]t
5mHH2~b r1 ib i !uHu2H2~d r1 id i !uTu2H, ~4!

wherem andmH5m1n are the two unfolding parameters,
n being the distance between the two thresholds of instability
which vanishes at the codimension-two point. In the Bruss-
elator, whens.sc , the Hopf instability occurs before the
Turing one and hencen.0. On the contrary whens,sc ,
the first instability to occur is the Turing one and in that case
n,0. We will suppose thatl andd r are positive as well as
g andb r , this last condition ensuring that the two bifurca-
tions will be supercritical. Notice that for the Brusselator,
b r is always positive. The slow spatial dependence should be
introduced if secondary instabilities with long wavelength
are to be studied. The system~3! and ~4! possesses three
nontrivial global solutions: ~1! a Turing structure:
T5$m/g%1/2, H50; ~2! a homogeneous limit cycle:
T50, H5$mH /b r%

1/2eiVt with the renormalization fre-
quencyV52b imH /b r ; and ~3! a mixed mode~MM !: T5
$@b rm2lmH#/D%1/2, H5$@gmH2d rm#/D%1/2eiVMt with
D5b rg2ld r and VM52b i uHMu22d i uTMu2, where HM
and TM are the preexponential factors ofH and T. This
solution corresponds to a Turing pattern with wave number
kc oscillating periodically in time with the frequency
(vc1VM).

Depending on the specific values of the coefficients of
Eqs.~3! and~4!, the relative stability of these three solutions
may vary, leading to different bifurcation scenarios
@9,19,21–23#.

~i! If D,0, the mixed mode is always unstable while the
pure Turing and Hopf modes are both stable in a given do-
main. Whenn.0, a regular increase ofm gives successive
transitions between the Hopf oscillations, the Turing-Hopf
bistability domain, and stationary Turing patterns. This
scheme is abbreviated asH-B-T. The inverse sequenceT-
B-H is obtained whenn,0 @Fig. 1~a!#.

~ii ! If D.0, the mixed mode is stable in the domain
where the Turing and Hopf modes are both unstable. When

FIG. 1. Theoretical bifurcation diagrams when a Turing mode
interacts with a Hopf mode. Solid and dashed lines correspond to
stable and unstable states, respectively.~a! When D,0, we get
bistability between the Turing and Hopf modes. Ifn.0, we have
the succession Hopf-bistability-Turing (H-B-T) and the inverse se-
quenceT-B-H whenn,0. ~b! WhenD.0, a stable mixed mode is
observed. Ifn.0, we have the successionH-MM-T and the inverse
sequenceT-MM-H whenn,0.
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n.0, we successively observe, by increasingm, the homo-
geneous limit cycle, the Turing-Hopf mixed mode, and sta-
tionary Turing patterns, i.e., the sequenceH-MM-T and the
inverse sequenceT-MM-H whenn,0 @Fig. 1~b!#. For some
values of parameters, the mixed mode can appear subcriti-
cally or also undergo a Hopf bifurcation of its amplitudes
T andH @22#. The limit cycle resulting from this instability
can disappear through a heteroclinic orbit around which
complex spatiotemporal behavior is expected to occur even
in small systems.

Near the CTHP, the coupling between the Turing and
Hopf instabilities thus allows one to observe different sce-
narios ~Turing-Hopf bistability or a Turing-Hopf mixed
mode! depending on the values of the parameters. We will
now illustrate these with the one-dimensional Brusselator
model numerically integrated by means of an implicit
scheme based on finite difference methods. Unless stated
otherwise in the captions, all space-time maps presented in
this article feature theX variable shown on a gray scale
ranging from its minimum~white! to its maximum~black!
value. Let us remark that in this model, some nonlinear terms
in the equations for the perturbations around the steady state
are proportional to the bifurcation parameterB. This charac-
teristic leads to a renormalization of the coefficients@24# of
the amplitude equations~3! and ~4! proportional to the dis-
tance (B2Bc ,s2sc), making the task of linking the bifur-
cation diagrams of Fig. 1 and those obtained numerically for
the Brusselator more difficult. Our simulations of the Bruss-
elator will thus focus on checking qualitatively to what ex-
tent the model bifurcation scenarios describe the spatiotem-
poral dynamics of a system near a CTHP. In particular, we
will show effects that have not yet been described in previ-
ous work.

A. Bistability and localized structures

In the Turing-Hopf bistability domain, the system
evolves, for a given set of parameters, either to homogeneous
temporal oscillations of the variables or to a stationary spa-
tial pattern depending on the initial condition. For some val-
ues of parameters near the CTHP, both schemesH-B-T and
T-B-H are observed numerically in the Brusselator in some
subdomains of the parameter space (A,s/sc). In addition, a
stable front between a Turing domain and a train of plane
waves@Fig. 2~a!# exists in the bistability domain. The stabil-
ity of this simplest localized state is related to a nonadiabatic
effect due to the interaction of the front with the periodicity
of the spatial organization@18,25–29#. This effect which is
not contained in the amplitude equation formalism may oc-
cur for fronts between two states one of which is periodic in
space. It appears, for instance, in the growth of crystals
where the interaction between the interface and the periodic
structure gives rise to a periodic potential. If the difference in
free energy between the two phases is smaller than the en-
ergy required to move the front by one wavelength, the front
remains pinned. The Brusselator being a nonpotential model,
one cannot define a function to minimize near the CTHP.
However, the picture of an interaction between the front and
the Turing structure remains qualitatively correct and gives
rise to an intrinsic pinning of the Turing-Hopf front for a
large set of values of the control parameterB ~Fig.

3!. The nonadiabatic effect also accounts for a stepwise pro-
gression of the Turing-Hopf front outside the pinning do-
main @18,29,30#. In this process, the mode locking phenom-
enon shows up as a tendency of the average velocity to lock
into rational multiples of the Hopf frequency@31#. The sim-

FIG. 2. Space-time maps of localized structures. A one-
dimensional Brusselator model of lengthL5250 with no-flux
boundary condition~BC! evolves in time running upwards during
20 units of time. The parameters areA52.5,
Dx54.11, Dy59.73(s/sc50.92). ~a! Turing-Hopf front
(B510). ~b! Turing structure embedded in a Hopf background
(B510). ~c! Hopf mode embedded in a Turing background
(B510). ~d! ‘‘Flip-flop’’ dynamics shown during 50 units of time
(B512.5).

FIG. 3. Stability domain of the different localized structures
shown in Fig. 2. The signxl denotes localized Turing domains
containingx wavelengths in their core. For the values of parameters
used here, localized Turing domains with down to five wavelengths
have the same pinning domain as that of the front which results
from a nonadiabatic effect. Localized Turing domains with fewer
than five wavelengths have a wider stability domain thanks to the
action of a nonvariational effect. The ‘‘flip-flop’’ shown in Fig. 2~d!
is the localized structure stable in the largest domain.
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plest mode locking is one wavelength for one frequency but
other ratios are possible as long as there is an integer number
of wavelengths per period of oscillation or vice versa. In
these situations, the front may progress faster or slower and,
in order to satisfy the nonadiabatic constraint, the system
then sometimes creates temporary localized subzones~Fig.
4! @30#.

Two Turing-Hopf fronts can be used to build up stable
localized structures corresponding to a droplet of a Turing
~Hopf! state embedded into a Hopf~Turing! domain @Figs.
2~b! and 2~c!#. We observe that, if the Turing core contains
several wavelengths, the stability region of such localized
structures is the same as that of the front~Fig. 3! and can
correspondingly be ascribed to pinning effects. Such local-
ized structures are thus also stabilized by nonadiabatic ef-
fects. If the localized Turing domain contains few wave-
lengths, this stabilizing nonadiabatic effect can no longer be
invoked alone. Stable localized Turing patterns with few
wavelengths are nevertheless observed in the Brusselator
model and the fewer wavelengths they contain, the largest
their stability domain~Fig. 3!. Their stability should then
result from nonvariational effects present in the Brusselator
as this model cannot be derived from any potential function.
Nonvariational effects have been shown in other systems to
stabilize localized structures if they provide a repulsive in-
teraction between two fronts that otherwise attract each other
@1,32,33#. They can thus account for the existence of local-
ized droplets of one state embedded into the other state. This
effect is strongest for the so-called ‘‘flip-flop’’ localized pat-
tern having the smallest core@Fig. 2~d!# and therefore the
widest stability domain. This could explain why the ‘‘flip-
flop’’ is the only localized pattern that has been observed
experimentally in the CIMA reaction for values of the con-
centrations near the CTHP@9#. Its two-dimensional exten-

sion, a Turing spot sitting in the core of a one-armed spiral,
has also been obtained both in numerical simulations@29#
and in the CIMA experiments@34#. Turing-Hopf localized
structures have also been observed experimentally in one-
dimensional arrays of resistively coupled nonlinearLC os-
cillators @10# and in binary-fluid convection@11#.

Bistability between the Turing and Hopf modes near a
CTHP had already long been predicted in the amplitude
equation formalism. We have shown that in this bistability
regime, localized structures of one state embedded into the
other can be stabilized by a combination of nonadiabatic and
nonvariational effects. In addition, if long-wavelength insta-
bilities are considered, the Hopf mode could undergo a
Benjamin-Feir instability and the Turing mode an Eckhaus
instability @1#. These types of secondary instabilities have not
been considered here.

B. Mixed mode and spatiotemporal chaos

Near the CTHP, the system may also exhibit a stable
mixed mode corresponding to a spatial pattern with the Tur-
ing wave number oscillating in time with the Hopf fre-
quency. This stable state has been obtained by numerical
integration of the Brusselator model with periodic boundary
conditions in bothH-MM-T andT-MM-H cases. A space-
time map of this dynamics~Fig. 5! shows the polygonal
space-time structure characteristic of a mixed mode. This
solution was previously obtained in numerical simulations of
the Brusselator by Sangalli and Chang@35# in a H-MM-T
scenario. Here we recover several of these scenarios in the
(A,s/sc) parameter space but we also find the complemen-
tary T-MM-H scenario. This invalidates the conclusions of
Rovinsky and Menzinger@36# stating that the MM is always
unstable in the Brusselator.

The amplitude equations we have considered to predict
the MM do not contain any spatial dependence of the ampli-
tudes on the large scales. If such a dependence is taken into
account, phase stability criteria can be derived giving the
conditions for which the global solutions and the MM in
particular@23# can become unstable towards secondary long-
wavelength instabilities. In our simulations of the Brussela-

FIG. 4. Space-time map showing a Turing mode invading a
Hopf background in a system of length 300 during 200 units of
time. No-flux BC are applied. The mean velocity of the front is
slower than one Turing wavelength for one temporal oscillation and
hence the system evolves through intermediate localized oscilla-
tions. The initial condition is a stable front obtained for the same
values of parameters as in Fig. 2 andB59. The front is set unstable
by suddenly decreasingB to 8.8 in order to go outside the pinning
domain.

FIG. 5. Space-time map of the mixed mode with one wave
number and one frequency forA50.8, Dy510, s/sc50.9,
B51.68, L564 during 25 units of time. Periodic BC are applied.
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tor model, such a phase instability has been obtained. Using
the sizeL of the system as a bifurcation parameter, the
mixed mode of Fig 5. becomes phase unstable whenL is
increased and the system enters a regime of spatiotemporal
chaos@Fig. 6~a!#. The fact that this chaos appears when using
the length of the system as a control parameter suggests that
we are here dealing with a long-wavelength instability and
not with a homoclinic type of chaos. More complex spa-
tiotemporal dynamics are obtained like the one displayed in
Fig. 6~b!: the stable MM appears as localized structures in a
Turing pattern when the size of the system is increased. This
mixed mode, generic of the CTHP, is characterized by one
wave numberkc and one frequencyvc . Other types of
mixed modes can also be observed close to the CTHP as we
will see next.

III. SUBHARMONIC INSTABILITY OF A TURING MODE

A mixed state different from the (kc ,vc) mixed mode
discussed above~Fig. 5! has also been obtained in the Brus-
selator. This mixed state is characterized by one frequency
and two wave numbers, the Turing onekc and its subhar-
monic kc/2. At each location, the system is oscillating in
time and therefore the minima of the mixed state are shifted
one wavelength each half period of oscillations. The corre-
sponding space-time map of this dynamics~Fig. 7! concen-

trates all this information. We have drawn in Fig. 8 a sche-
matic dispersion relation of the Brusselator model. Let us
suppose that the primary bifurcation leads to the Turing state
with wave numberkc . As we are close to the CTHP, the
linear eigenvalue of the subharmonic mode with wave num-
ber kc/2 may be complex with frequencyv(kc/2) and its
growth rate small. In the vicinity of such a critical situation
@37#, the variables of the system are expanded as

C~x,t !5C01TeikcxwT1ALe
i @v~kc/2!t1~kc/2!x#wL

1ARe
i @v~kc/2!t2~kc/2!x#wR1c.c., ~5!

wherewL andwR are the critical eigenvectors correspond-

FIG. 6. Dynamics of the mixed mode in a large system. The
dynamics is shown during 40 units of time with periodic BC.~a!
Phase chaos. All parameters are the same as in Fig. 5 except
L5512. ~b! Localized MM embedded in the Turing regime ob-
tained forA50.8, Dy510, s/sc50.75, B51.780, L5512.

FIG. 7. Space-time map of theY variable of the Brusselator
shown in gray scale ranging from its minimum~white! to its maxi-
mum ~black! value. The dynamics features a subharmonic Turing
mode with two wave numbers and one frequency shown during 35
units of time. The parameters areA51.5, Dy510,
s/sc50.75, B54.4, L564. Periodic BC are applied.

FIG. 8. Schematic dispersion relation explaining the resonance
between the Turing mode (k,0) and the subharmonic mode
@k/2,v(k/2)# leading to the existence of the subT mode of Fig. 7.
The solid~dashed! line corresponds to thek dependence of the solid
real ~imaginary! part of the eigenvalues of the linear stability analy-
sis.
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ing to the left- and right-going waves of wave numberkc/2
and frequencyv(kc/2). The amplitudes obey the following
equations@38,39#:

]T

]t
5mT2guTu2T2l~ uARu21uALu2!T1vAR*AL , ~6!

]AR

]t
5m8AR2g8uARu2AR2h8uALu2AR2l8uTu2AR

1v8T*AL , ~7!

]AL

]t
5m8AL2g8uALu2AL2h8uARu2AL2l8uTu2AL

1v8TAR , ~8!

wherem8, g, andl are taken as real while the primed co-
efficients are complex (a85a r81 ia i8). All bifurcations are
considered here to be supercritical withhr8 andl r8 taken as
positive. Among others, this system admits the following
global solutions@39,40#: ~1! a Turing mode:T5$m/g%1/2,
AR5AL50; ~2! a right traveling wave: T50,
AR5$m8/gr8%

1/2eiVwt, AL50 or a left traveling wave:T50,
AR50,AL5$m8/gr8%

1/2eiVwt with the renormalization fre-
quencyVw52gi8m8/gr8; and ~3! a mixed mode solution
T5TT , AR5RTe

i (VTt1fR), AL5RTe
i (VTt1fL). By an appro-

priate choice of the origin of the coordinates, we can take
TT as real. The phases obey the equation

]~fR2fL!

]t
522v r8TTsin~fR2fL!. ~9!

The fR2fL50 (p) stationary solution is stable when
v r8.0 (,0). ThenTT , RT , andVT are the solutions of the
following set of equations:

RT
25

m82l r8TT
21uv r8uTT

gr81hr8
, ~10!

05gTT
32~m22lRT

2!TT7vRT
2 , ~11!

VT56v i8TT2~gi81hi8!RT
22l i8TT

2 . ~12!

The upper~lower! sign in front of thev ’s corresponds to
the case wherev r8.0 (,0). The most prominent feature of
Eqs.~6!–~8! is the presence of the resonant interaction term
between the two modes (kc,0) and @kc/2,v(kc/2)# propor-
tional to v andv8 which can induce a subharmonic destabi-
lization of the Turing mode giving rise to a new mixed mode
solution. A linear stability analysis of the solutions to~6!–~8!
shows indeed that the Turing solution is the first to appear
supercritically whenm8,m and g.0. This pure Turing
mode becomes unstable towards the traveling wave if

m8.l r8
m

g
~13!

and unstable towards the mixed mode solution when

m8.l r8
m

g
2uv r8uAm

g
. ~14!

As this mixed mode results from a subharmonic instabil-
ity of the Turing pattern, let us coin it the subharmonic Tur-
ing mixed mode or in short subT. A comparison of~13! and
~14! shows that the first instability of the Turing mode will
always be towards the subT rather than towards the traveling
waves. This transition may be subcritical. The subT solution
is the combination of a steady structure with wave number
kc and of a standing wave formed by the superposition of the
left- and right-going waves (AR5AL) with wave number
kc/2 and frequencyv(kc/2). The resulting spatiotemporal
dynamics thus corresponds to a spatial pattern with two wave
numbers oscillating in time with one frequency as observed
in the Brusselator model~Fig. 7!. The two wave numbers are
here, respectively, the Turing wave number and its subhar-
monic. This mixed state is thus of a different origin than the
one due to the interaction between a steady pattern and a
wave as introduced in@7# where the two wave numbers are
not necessarily linked. To find if the subT solution is stable
towards perturbations of its amplitude, we insert
T5TT1dT , AR5AL5(RT1dR)e

iVTt into ~6!–~8! and find
the characteristic equation

v22av1b50, ~15!

with

a522gTT
27v

RT
2

TT
22RT

2~gr81hr8!, ~16!

b52RT
2H F2gTT26v

RT
2

TT
G~gr81hr8!

2~ uv r8u22l r8TT!~6v22lTT!J . ~17!

When the Turing mode~with RT50, TT5Am/g) be-
comes unstable, a transition towards a stable subT mode oc-
curs if b.0, i.e.,

2m~gr81hr8!2S v22lAm

g D S v r822l r8Am

g D .0

~18!

and if a,0. On the other hand, ifa.0, the subT solution
can undergo a Hopf instability of its amplitude that should
give rise to chaotic behaviors. It is worthwhile to note that
the subT mode can be obtained for values of parameters such
that the standing waves of the system~7! and ~8! with
T50 are unstable versus traveling waves (hr8.gr8). It is
known that such a standing wave can be stabilized if an
external time modulation with a frequency twice the fre-
quency of the traveling waves is applied to the system
@41,42#. Here the stabilization of the standing wave is self-
induced by an intrinsic coupling with the steady mode which
plays the role of an external forcing by restoring the left-
right symmetry. The subT mode described here analytically
has been observed in the Brusselator forA51.5 when
s/sc,1. Looking at Fig. 9, we see that for the sameA the
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T-B-H scheme exists nears/sc51, that is, near the CTHP
line. Subharmonic instability of the Turing mode comes into
play further away from this line. The subT mode is reminis-
cent of subharmonic cellular patterns observed experimen-
tally in the flow of a viscous fluid inside a partially filled
rotating horizontal cylinder@13#. In this experimental setup,
successive transitions between steady patterns, the subT
mode, and spatiotemporal chaos due to a phase instability of
the subT mode@40# are observed when the control parameter
is increased.

We have shown that near a CTHP, a Turing mode can
give rise to subharmonic cellular patterns oscillating in time
and generated by subharmonic instabilities. The same type of
instability can destabilize the other generic solution of the

system, i.e., the Hopf mode, as we will see in the next sec-
tion.

IV. SUBHARMONIC INSTABILITY OF A HOPF MODE

Another subharmonic instability could be observed if the
base state is the Hopf mode with frequencyvc generated by
a primary bifurcation. The subharmonic modevc/2 has an
eigenvalue of the linear stability analysis associated to a
wave numberk(vc/2) ~Fig. 10!. If a resonant interaction
@43–45# occurs between the two modes (0,vc) and
@k(vc/2),vc/2#, the variables of the system may be written
as

C~x,t !5C01HeivctwH1ALe
i @~vc/2!t1k~vc/2!x#wL

1ARe
i @~vc/2!t2k~vc/2!x#wR1c.c., ~19!

where the amplitudes obey the following equations:

]H

]t
5mHH2buHu2H2g~ uARu21uALu2!H1vALAR ,

~20!

]AR

]t
5m9AR2b8uARu2AR2g8uALu2AR2d8uHu2AR

1v8HAL* , ~21!

FIG. 9. Summary of the different spatiotemporal dynamics that
can be observed in the Brusselator model near a codimension-two
Turing-Hopf point in the parameter spaceA2s/sc . The line
s/sc51 is the codimension-two Turing-Hopf line. Ifs/sc,1
(.1), the Turing~Hopf! bifurcation is the first to occur at critical-
ity. The filled squares~circles! are points for which we have ob-
tained only Turing~Hopf! states for all the values ofB and the
initial conditions we have scanned. The filled triangles represent
points for which we obtain by increasingB successive transitions
between a Turing mode—a mixed mode with one wave number and
one frequency~see Fig. 5!—a Hopf mode. The reverse situation
with the Hopf mode being the first to appear exists for the open
squares. Bistability regimes with the corresponding localized struc-
tures ~see Fig. 2! obtained after the Turing~Hopf! mode are ob-
served at points with an open triangle~circle!. SubT modes with
two wave numbers and one frequency~see Figs. 7 and 14! are
observed at points where an open diamond is pictured. Filled dia-
monds represent points where the subHT mode with two wave
numbers and two frequencies~see Fig. 11! come to hand. Points
1–3 are the locations for which numerical bifurcation schemes are
discussed in Sec. V.

FIG. 10. Schematic dispersion relation explaining the resonance
between the Hopf mode (0,v) and the subharmonic mode
@k(v/2),v/2# leading to the existence of a subH mode with one
wave number and two frequencies. If in addition 2k is of the order
of the Turing wave number, the additional resonance with the mode
(2k,0) can lead to the existence of a subHT mode with two wave
numbers and two frequencies. The solid~dashed! line corresponds
to thek dependence of the real~imaginary! part of the eigenvalues
of the linear stability analysis.
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]AL

]t
5m9AL2b8uALu2AL2g8uARu2AL2d8uHu2AL

1v8HAR* . ~22!

All coefficients are complex (a5a r1 ia i). Whenm r9,m r
H a

pure Hopf mode is the first to appear with
H5Am r

H/b re
iVt; AR5AL50; V52b im r

H/b r . Here also
the self-induced parametric terms proportional tov8 favor
the onset of modulated waves for which the three amplitudes
are different from zero. Performing the linear stability analy-
sis of the homogeneous oscillations with respect to perturba-
tions dRR5dRL5dReic we find the instability condition:

m r92d r8
m r
H

b r
1Am r

H

b r
@v r8cos2c1v i8sin2c#.0, ~23!

where the phasec is determined by

d i8
m r
H

b r
2m i95Am r

H

b r
@v i8cos2c1v r8sin2c#. ~24!

When the Hopf mode is unstable, another mixed state with
now HÞ0; AL5RHe

ifL; AR5RHe
ifR can appear where

H, RH , andF5fL1fR are found as solutions of the fol-
lowing system of equations:

05m r92@b r81g r8#RH
2 2d r8H

21H@v r8cosF1v i8sinF#,
~25!

05m i92@b i81g i8#RH
2 2d i8H

21H@v i8cosF2v r8sinF#,
~26!

05m r
HH2b rH

322g rRH
2H1RH

2 @v rcosF2v isinF#,
~27!

052b iH
322g iRH

2H1RH
2 @v rsinF1v icosF#. ~28!

As this other mixed mode results from a subharmonic insta-
bility of the homogeneous Hopf limit cycle, let us coin it the
subharmonic Hopf mixed mode or in short subH. This sub
H mode is the combination of a homogeneous temporal os-
cillation with frequencyvc and of a standing wave with
frequencyvc/2 and wave numberk(vc/2). The resulting
dynamics is then a pattern with one wave number oscillating
with two frequencies. This subH is different from the modu-
lated standing waves occurring when homogeneneous and
finite wave number Hopf instabilities interact@46#. We have
not observed the subH dynamics in the Brusselator model
although it should be generic as it is independent of the
proximity of the CTHP contrary to the subT mode. Near the
CTHP, we nevertheless observe a transition from a Hopf
mode towards a mixed state with two wave numbers and two
frequencies. We suggest that near the CTHP, a subH mode
characterized by the wave numberk(vc/2) could resonate
with the Turing mode of wave numberkc if 2k;kc ~Fig. 10!.
In that case, the variables of the system would be given by

C~x,t !5C01HeivctwH1ALe
i @k~vc/2!x1~vc/2!t#wL

1ARe
2 i @k~vc/2!x2~vc/2!t#wR1Te2ikxwT1c.c.,

~29!

where the amplitudes obey a set of four coupled amplitude
equations. We have not analyzed this set of equations but it
seems reasonable to expect conditions for which a transition
between a Hopf mode and a mixed state with two wave
numbers and two frequencies is possible. As this spatiotem-
poral dynamics results from the resonance near the CTHP
between a subH mode and a Turing mode, let us coin it the
subHT mode. This subHT mode has been obtained in the
Brusselator domain, for example, when (A,s/sc)
5(3,1.1). Starting from a homogeneous limit cycle at
B510.1 in a system of length 64, a cellular pattern with two
wavelengths appears with increasing amplitude whenB is
increased above 10.2. At each location of the system, the
variables oscillate in time with two frequencies. After one
period of oscillation, each maximum of the spatial pattern
has become a minimum and vice versa. The initial structure
is recovered after two periods as can be seen on the related
space-time plot shown in Fig. 11~a!. The same dynamics has
been obtained in a reaction-diffusion model of a semicon-
ductor device@47#. In the Brusselator, the subHT may also
coexist with a traveling subHT mode@Fig. 11~b!#.

Several mixed modes are stable near the CTHP in the
Brusselator model: the simple MM, the subT mode, and the
subHT. The transitions between those dynamics of the sys-
tem can sometimes become very complex as we will see
next.

V. ADDITIONAL SPATIOTEMPORAL DYNAMICS

To summarize the dynamics described up to now, let us
look at Fig. 9, which displays the different bifurcation sce-
narios obtained numerically in the Brusselator model in the
parameter space (A,s/sc). Whens/sc,1, the Turing in-
stability is the first one to be observed. For large values of

FIG. 11. Space-time maps of~a! the subHT mode with two
frequencies and two wave numbers in a box of lengthL580 with
periodic BC displayed during 25 units of time. The parameters are
A53, Dy510, s/sc51.1, B510.445. ~b! Traveling subHT
mode obtained for the same conditions as in~a! but with another
random initial condition. The dynamics is shown during 100 units
of time.
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A, theT-B-H scenario is at hand with its related dynamics
such as Turing-Hopf fronts and localized structures. For
smallA’s, theT-MM-H bifurcation scheme is obtained. This
MM may give rise to phase chaos or localized structures in
larger systems. The subT mode exists for intermediateA’s
but smallers/sc where the typical dynamics with two wave
numbers and one frequency is observed. Eventually, for
smallers/sc , the pure Turing mode is the only stable one
we get.

For s/sc.1, the Hopf instability is the first one to be
observed. For smallA’s, the pure Hopf mode is the only one
existing. For intermediateA’s, we get theH-B-T scenario
and the related localized structures. For higherA’s, the
H-MM-T scheme is obtained near thes/sc51 line while
the H-subHT transition comes out for highers/sc . The
situation on this side of the degeneracy line can nevertheless
become quite complex as several bifurcation scenarios can
mix at the same point (A,s/sc) when B is increased. To
illustrate this, let us consider in detail three dynamical sce-
narios.

For (A,s/sc)5(3,1.1) ~point 1 in Fig. 9!, the numerical
bifurcation scenario obtained whenB is increased is the fol-
lowing ~Fig. 12!: starting from a homogeneneous Hopf
mode, a subharmonic instability towards the subHT mode of
Fig. 11~a! occurs. This is the scenario explained in Sec. IV
and which comes into play near criticality for several points
in the (A,s/sc) plane. In addition this subHT mode coexists
with a traveling subHT mode@Fig. 11~b!#. Above a certain
value ofB, the subHT mode enters a transient chaotic dy-
namics which eventually settles down on localized struc-
tures. These localized structures are bistable with the pure
Turing and Hopf modes for higherB. In the intermediate
region, a subT mode is also obtained. Its existence could be
understood in terms of aT-subT transition whenB is de-
creased. Unexpectedly, theT-subT transition can thus also
be observed fors/sc.1 where the Hopf instability is the
first to occur above criticality. We thus see that in a range of
values of the control parameterB, there is coexistence of
various types of spatiotemporal dynamics mixing several of
the bifurcation schemes we have presented.

In our second example, let us detail the bifurcation
scheme at (A,s/sc)5(3,1.05) ~point 2 in Fig. 9!. Near the
threshold of instabilityB5Bc

H , the Hopf mode prevails.
WhenB is increased, this Hopf mode becomes unstable: its
amplitude begins to oscillate periodically and a subHT mode
appears transiently in time@Fig. 13~a!#. Such a periodic in-
cursion in time of the subHT mode can be explained in terms
of a limit cycle instability of the four coupled amplitude
equations that would admit the subHT mode as solution. The
period of appearance of the subHT mode decreases when
B is increased. This dynamics is unstable with respect to the
phase when the size of the system is sufficiently large@Fig.
13~b!#. WhenB510.4, the system then evolves towards a
stable Turing mode. This Turing mode further bifurcates to-
wards a subT mode whenB is further increased. This subT
mode @Fig. 14~a!# here also coexists with a drifting subT
mode @Fig. 14~b!#. Such a drifting mixed state was already
seen by Sangalli and Chang@35# but in a Brusselator with
differential convection. In our case, the dynamics is obtained
without convection, which shows that the drifting subT
mode is a solution totally intrinsic to the reaction-diffusion
system near a CTHP@39#. It corresponds then to a mixed
mode solution of the set of equations~6!–~8! for which

FIG. 12. Numerical bifurcation diagram obtained for the values
of parameters of Fig. 11~point 1 in Fig. 9!. LS denotes localized
structures~see Fig. 2!. All other signs are as in Fig. 9.

FIG. 13. Space-time map showing~a! the periodic incursion of a
subHT mode into a pure Hopf mode in a system of sizeL564 for
A53, Dy510, s/sc51.05, B510.3 with periodic BC~point 2
in Fig. 9! during 25 units of time.~b! The same dynamics becomes
unstable in a larger system of sizeL5512.

FIG. 14. Space-time maps of~a! a subT mode with two wave
numbers and one frequency obtained forA53, Dy510,
s/sc51.05, B510.45, L564, periodic BC and shown during 25
units of time running upwards. Remark thats/sc.1. Hence the
Hopf mode is the first to appear above the critical value ofB. This
subT mode exists only for higher values ofB. ~b! In a system of
sizeL580 with periodic BC, an asymmetric subharmonic Turing
mixed mode is obtained for the same values of parameters as in~a!.
The dynamics is shown during 100 units of time.
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sin(fR2fL)Þ0 andRRÞRL . This conclusion is confirmed
by numerical simulations of the Gray-Scott model near the
CTHP by Rasmussen and Mazin@48# who also find bistabil-
ity between the subT and the drifting subT mode. The over-
all bifurcation scheme for point 2 in Fig. 9 thus consists in
the following succession of states: pure Hopf mode–
heteroclinic appearance of the subHT mode–pure Turing
mode–subT state coexisting with a traveling subT mode.

Our last example concerns the point (A,s/sc)
5(2.5,1.1) ~point 3 in Fig. 9!. In this case, a change of the
control parameter scans successive transitions@30# from a
Hopf mode towards a subHT mode followed by spatiotem-
poral chaos~Fig. 15! and eventually localized structures
characteristic of a bistability regime. The same behavior ap-
pears in the Gray-Scott model. In that case, the spatiotempo-
ral chaos could be controlled to yield a stable Turing pattern
@49#.

The classification of the spatiotemporal dynamics near a
CTHP in four scenarios: bistability, MM, subT or subHT
thus allows description of most of the dynamics featured by
a reaction-diffusion model.

VI. SUMMARY AND CONCLUSION

In this article, different bifurcation scenarios existing near
a CTHP have been studied in the framework of amplitude
equation formalism and used to understand and classify the
numerical simulations of a reaction-diffusion model for val-
ues of parameters close to a CTHP. Two major families of
spatiotemporal dynamics have been presented: those due to
the interplay between the pure Turing and Hopf modes and
those related to subharmonic instabilities of these modes.

When a Turing modeT(kc,0) interacts with a Hopf mode
H(0,vc) near a CTHP, two types of behaviors can be ob-
tained in addition to the existence of the pure modes.

~1! The Turing-Hopf bistability: in that case, the existence

of nonadiabatic effects accounts for behaviors such as the
stability of a simple Turing-Hopf front and of localized
structures or a stepwise progression of this front depending
on the values of parameters. Nonvariational effects contrib-
ute also to the existence of localized structures in the bista-
bility domain of the two pure solutions. The existence of
such a bistability domain and of the related localized struc-
tures has been obtained in the Brusselator model. Such lo-
calized structures have now been observed in several experi-
mental systems@9–11#.

~2! The Turing-Hopf mixed mode: spatial pattern charac-
terized by one wave number and oscillating in time with one
frequency. This mixed mode is generically observed in our
reaction-diffusion model where it may also become phase
unstable in large systems giving rise to spatiotemporal chaos.

The second major behaviors existing close to a CTHP
appear when the pure modes are subjected to subharmonic
instabilities. The resulting dynamics follow.

~1! The subharmonic Turing mixed mode, i.e., a cellular
structure with two wave numbers oscillating in time with one
frequency. This subT mixed mode has been observed in the
Brusselator model where it may nevertheless appear as part
of a much more complex overall bifurcation scheme. The
transition bwtween a Turing state and a subT mode has also
been seen experimentally in a hydrodynamical system where
the subharmonic oscillating spatial pattern becomes phase
unstable for higher values of the control parameter entering
then a spatiotemporally chaotic regime@13#.

~2! The subharmonic Hopf-Turing mixed mode corre-
sponding to a biperiodic oscillation in time of a biperiodic
modulation in space. This subHT mode exists in the Bruss-
elator where it is bistable with other dynamics. It has also
been observed in a reaction-diffusion model of a semicon-
ductor device@47#.

In addition to these major bifurcation schemes, we have
identified in the (A,s/sc) phase space of the Brusselator
three bifurcation scenarios that mix up the above classifica-
tion.

To conclude, we have shown here that the amplitude
equation formalism is a good basis to predict the spatiotem-
poral dynamics that can be observed near a CTHP. The bi-
furcation schemes predicted are recovered in the numerical
integration of a reaction-diffusion model. These simulations
confirm the theoretical predictions but also show some pecu-
liarities of the dynamics that cannot be explained by the
amplitude equations. In addition, the fact that different bifur-
cation schemes sometimes mixup when the control param-
eter is increased in the Brusselator points out the usefulness
of the simulation of a model in parallel with the use of am-
plitude equations. As some of the spatiotemporal regimes
presented here have been observed in experimental systems,
we hope that the additional scenarios we have described will
be observed in some physico-chemical systems featuring a
degeneracy point where two instabilities breaking, respec-
tively, space and time symmetries interact.
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FIG. 15. Space-time map of a complex spatiotemporal dynamics
obtained by starting from a random initial condition when
A52.5, Dx54.49, Dy58.91, s/sc51.1, B58 ~point 3 in Fig.
10! and no-flux BC are applied.L5512 and 300 units of time are
shown. The same dynamics results whenB is increased starting
from a subHT mode stable forB,7.8.
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